

Mind the gap: l'intervento precoce tra continuità evolutiva, discontinuità diagnostiche e multiculturalità.

> Bari, 27-28-29 Settembre 2023 Università degli Studi di Bari "Aldo Moro"

SIMPOSIO 10 SINERGIE TRA RICERCA E TERRITORIO PER UN'EFFICACE IDENTIFICAZIONE PRECOCE DEL RISCHIO PER PSICOSI

TRAIETTORIE DI METABOLISMO CEREBRALE NELLE FASI PRECOCI DELLA PSICOSI ED IL RUOLO DEL TRATTAMENTO CON ANTIPSICOTICI

Pierluigi Selvaggi, MD, PhD Ricercatore (RTdA) – Università degli Studi di Bari Aldo Moro Clinical Research Fellow - King's College London

BRAIN METABOLISM IN PSYCHOSIS

- The brain absorbs the highest metabolic demand of any organ at rest (20 % of O₂ basal consumption and 50-65% of total metabolic requirement) with minimal reserve capacity (Kuzawa et al. PNAS 2014).
- SCZ patients show reduced glucose utilization (18F-FDG PET) in several cortical regions (meta-analytical evidence, with methodological caveats) (Hill et al. Acta Psych Scan 2004)
- Meta-analytical evidence of reduced cortical perfusion in SCZ from 150-H20 PET studies (Goozée et al. Neurosci. Biobehav. Rev. 2014)

- Meta-analytical evidence of increased lactate and decreased ph in post-mortem SCZ brains (controlled for post-mortem intervals and agonal state) (Hagihara et al. Neuropsychopharm. 2018)
- The same pattern has been observed *in vivo* using Magnetic Resonance Spectroscopy (MRS) (Dogan et al. Neuropsychopharm. 2018) and CSF biochemistry (Regenold Biol. Psych. 2009)
- Converging evidence from transcriptomics, proteomics, metabolomics indicates deficits in mitochondrial activity in SCZ (Prabakaran et a. Mol Psych. 2004; Rajasekaran et al. Neurosc. Biobehav. Rev. (2015)

BRAIN METABOLISM IN PSYCHOSIS

Psychological Medicine

cambridge.org/psm

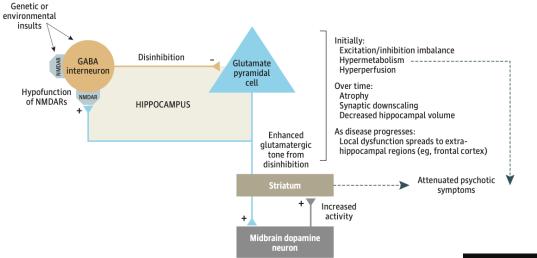
Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of ¹⁸FDG-PET studies in schizophrenia

Orig	ginal	Arti	cle
------	-------	------	-----

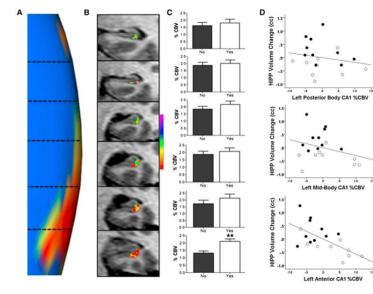
Leigh Townsend¹ (0), Toby Pillinger², Pierluigi Selvaggi^{3,4}, Mattia Veronese^{3,5}, Federico Turkheimer³ and Oliver Howes^{1,2}

Cite this article: Townsend L, Pillinger T,

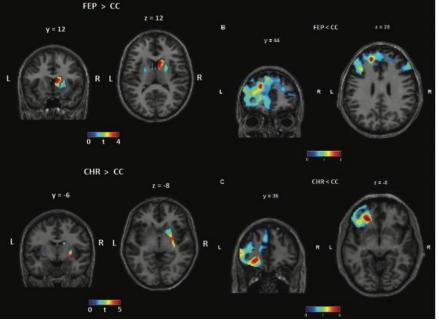
Huret 1991 12 29.81 0.9937 6 38.75 4.0850 -3.51 [-5.13; -1.88] 4.7 Bertollo 1996 8 63.38 2.0000 8 68.00 2.0000 -2.19 [-3.50; -0.87] 5.5 Wolkin 1985 10 32.55 1.3300 8 34.91 1.3900 -1.66 [-2.77; -0.54] 6.3 Clark 1991 16 36.71 5.8114 8 45.83 5.7814 -1.52 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.27; -0.31] 6.3 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.25; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4001 20 20.20 4.7000 -0.41 [-1.05; 0.24] 7.4 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.25; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65]		Patients	Controls	Standardised Mean	
Bertollo 1996 8 63.38 2.0000 8 68.00 2.0000 -2.19 [-3.50; -0.87] 5.5 Wolkin 1985 10 32.55 1.3300 8 34.91 1.3900 -1.66 [-2.77; -0.54] 6.1 Clark 1991 16 36.71 5.8114 8 45.83 5.7814 -1.52 [-2.49; -0.55] 6.5 Bartlett 1991 8 35.00 6.4000 11 42.30 4.9000 -1.25 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.000 8 40.90 5.7035 -1.24 [-2.7; -0.31] 6.5 Gur 1987 12 18.33 2.7912 12 22.11 3.3408 -1.19 [-2.07; -0.31] 6.5 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.25; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 3.9060 -0.07 [-0.79; 0.65]	Study	N Mean SD	N Mean SD	Difference	SMD 95%-CI Weight
Wolkin 1985 10 32.55 1.3300 8 34.91 1.3900 -1.66 [-2.77; -0.54] 6.1 Clark 1991 16 36.71 5.8114 8 45.83 5.7814 -1.52 [-2.27; -0.24] 6.3 Barliett 1991 8 35.00 6.4000 11 42.30 4.9000 -1.25 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.21; -0.26] 6.5 Gur 1987 12 18.33 2.7912 12 22.11 3.408 -1.19 [-0.70; -0.31] 6.7 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.25; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Gur 1995 22 31.23 14.1632 42 28.04	Huret 1991	12 29.81 0.993	6 38.75 4.0850		-3.51 [-5.13; -1.88] 4.7%
Clark 1991 16 36.71 5.8114 8 45.83 5.7814 -1.52 [-2.49; -0.55] 6.5 Bartlett 1991 8 35.00 6.4000 11 42.30 4.9000 -1.25 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.21; -0.26] 6.5 Gur 1987 12 18.33 2.7912 12 22.11 3.3408 -1.19 [-2.07; -0.31] 6.7 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2588 -0.52 [-1.25; 0.20] 7.4 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.05; 0.24] 7.4 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 7.484 7.4829 -0.07 [-0.79; 0.65] 7.2 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.4 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3	Bertollo 1996	8 63.38 2.000	8 68.00 2.0000		-2.19 [-3.50; -0.87] 5.5%
Bartlett 1991 8 35.00 6.4000 11 42.30 4.9000 -1.25 [-2.27; -0.24] 6.3 Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.21; -0.26] 6.5 Gur 1987 12 18.33 2.7912 12 22.11 3.3408 -1.19 [-2.07; -0.31] 6.7 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.25; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.05; 0.24] 7.4 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.59; 0.45] 7.3 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.2	Wolkin 1985	10 32.55 1.330	8 34.91 1.3900		-1.66 [-2.77; -0.54] 6.1%
Wolkin 1988 13 34.10 5.0040 8 40.90 5.7035 -1.24 [-2.21; -0.26] 6.5 Gur 1987 12 18.33 2.7912 12 22.11 3.3408 -1.19 [-2.07; -0.31] 6.7 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2588 -0.52 [-1.95; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.22; 0.40] 6.5 Biver 1995 12 57.27 12.0470 12 62.25 12.9079 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 52.98 4.0401 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.7 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.79; 0.65] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92	Clark 1991	16 36.71 5.811	8 45.83 5.7814		-1.52 [-2.49; -0.55] 6.5%
Gur 1987 12 18.33 2.7912 12 22.11 3.3408 -1.19 [-2.07; -0.31] 6.7 Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.5; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.25; 0.20] 7.2 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.3 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 <td>Bartlett 1991</td> <td>8 35.00 6.400</td> <td>11 42.30 4.9000</td> <td></td> <td>-1.25 [-2.27; -0.24] 6.3%</td>	Bartlett 1991	8 35.00 6.400	11 42.30 4.9000		-1.25 [-2.27; -0.24] 6.3%
Buchsbaum 1990 13 18.40 4.1110 18 21.35 6.2598 -0.52 [-1.25; 0.20] 7.2 Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.25; 0.20] 7.2 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.25; 0.20] 6.2 Biver 1995 15 23.38 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 [-2.86; 1.37]	Wolkin 1988	13 34.10 5.004	8 40.90 5.7035		-1.24 [-2.21; -0.26] 6.5%
Buschbaum 1992 18 18.30 4.4000 20 20.20 4.7000 -0.41 [-1.05; 0.24] 7.4 Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.05; 0.24] 7.4 Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.59; 0.45] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.45] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.25; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 [-2.86; 1.37]	Gur 1987	12 18.33 2.791	12 22.11 3.3408		-1.19 [-2.07; -0.31] 6.7%
Tamminga 1992 12 57.27 12.0470 12 62.52 12.9079 -0.41 [-1.22; 0.40] 6.5 Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.79; 0.65] 7.2 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 [-2.86; 1.37]	Buchsbaum 1990	13 18.40 4.111	18 21.35 6.2598		-0.52 [-1.25; 0.20] 7.2%
Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.59; 0.45] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 -0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 [-2.86; 1.37]	Buschbaum 1992	18 18.30 4.400	20 20.20 4.7000		-0.41 [-1.05; 0.24] 7.4%
Biver 1995 15 23.98 4.4041 15 24.25 3.0960 -0.07 [-0.79; 0.65] 7.2 Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.59; 0.45] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 [-2.86; 1.37]	Tamminga 1992	12 57.27 12.047	12 62.52 12.9079		-0.41 [-1.22; 0.40] 6.9%
Clark 2001 26 47.28 8.9749 32 47.84 7.4829 -0.07 [-0.59; 0.45] 7.7 Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229		15 23.98 4.404	15 24.25 3.0960		
Gur 1995 22 31.23 14.1632 42 28.04 8.7735 0.29 [-0.23; 0.81] 7.7 Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.25; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229	Clark 2001	26 47.28 8.974	32 47.84 7.4829		
Cleghorn 1989 8 52.53 29.6822 10 42.92 16.2961 0.40 [-0.55; 1.34] 6.6 Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; 0.18] 100.0 [-2.86; 1.37]	Gur 1995	22 31.23 14.163	42 28.04 8.7735		
Buschbaum 1984 16 28.25 6.5797 19 24.89 7.4254 0.47 [-0.21; 1.14] 7.3 Random effects model 209 229 -0.74 [-1.31; -0.18] 100.0 Prediction interval [-2.86; 1.37] [-2.86; 1.37] [-2.86; 1.37] [-2.86; 1.37]	Cleahorn 1989				
Prediction interval [-2.86; 1.37]	•			-	•
	Random effects model	209	229	\$	-0.74 [-1.31; -0.18] 100.0%
Heterogeneity: <i>I</i> ² = 76%, <i>p</i> < 0.01	Prediction interval				[-2.86; 1.37]
	Heterogeneity: $I^2 = 76\%$, p	< 0.01			
-4 -2 0 2 4	•			-4 -2 0 2 4	


Lower 18F-FDG uptake in SCZ in the frontal cortex (Hedge's g = -0.66 (moderate to large effect size)

Chronic patients show lower frontal metabolism as compared with FEP


Medicated patients show lower frontal metabolism as compared with free/naive

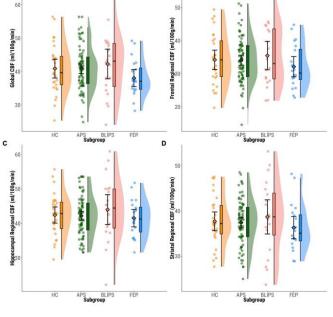
	Standardised Mean				Standardised Mean		0.5%
Subgroup	Difference	SMD	95%-CI	Subgroup	Difference	SMD	95%-Cl
chronic	:			medicated/mixed	:		
Buschbaum 1984	-	0.47	-0.21; 1.14]	Clark 1991		-1.52	[-2.49; -0.55]
Wolkin 1985	- <u>-</u>		-2.77; -0.54]	Huret 1991			[-5.13; -1.88]
Gur 1987			-2.07; -0.31]	Gur 1995	i <u></u>		[-0.23; 0.81]
Wolkin 1988		-1.24 [-2.21; -0.26]	Bertollo 1996	I		[-3.50; -0.87]
Buchsbaum 1990		-0.52	-1.25; 0.20]	Random effects model			[-4.13; 0.92]
Bartlett 1991		-1.25 [·	-2.27; -0.24]	$l^2 = 91\% [79\%; 96\%], \chi_3^2 = 32.5$	0 (5 < 0.01)	-1.01	[-4.13; 0.92]
Clark 1991	-191- 1		-2.49; -0.55]	$T = 91\% [79\%; 96\%], \chi_3 = 32.5$	9 (p < 0.01)		
Huret 1991 —			-5.13; -1.88]				
Tamminga 1992			-1.22; 0.40]	naïve/drug free	÷		
Biver 1995			-0.79; 0.65]	Buschbaum 1984			[-0.21; 1.14]
Bertollo 1996 Random effects model			-3.50; -0.87]	Wolkin 1985			[-2.77; -0.54]
$l^2 = 75\% [55\%; 86\%], \chi^2_{10} = 40.46 (p < 0.01)$		-1.07 [-	1.76; -0.38]	Gur 1987		-1.19	[-2.07; -0.31]
$7 = 75\%$ [55%, 66%], $\chi_{10} = 40.46$ (p < 0.01				Wolkin 1988		-1.24	[-2.21; -0.26]
first episode				Cleghorn 1989	<u></u>	0.40	[-0.55; 1.34]
Cleghorn 1989		040	-0.55; 1.34]	Buchsbaum 1990		-0.52	[-1.25; 0.20]
Buschbaum 1992			-1.05; 0.24]	Bartlett 1991			[-2.27; -0.24]
Clark 2001			-0.59; 0.45]	Buschbaum 1992			[-1.05; 0.24]
Random effects model	\rightarrow	-0.09 [-	0.97; 0.79]	Tamminga 1992			[-1.22; 0.40]
$I^2 = 0\% [0\%; 89\%], \chi_2^2 = 1.96 (p = 0.38)$		10000-1000-00 -		Biver 1995	1.00		[-0.79; 0.65]
mixed				Clark 2001			[-0.59; 0.45]
Gur 1995	*		-0.23; 0.81]	Random effects model		-0.48	[-0.94; -0.02]
Random effects model		0.29 [·	0.23; 0.81]	$I^2 = 60\% [22\%; 79\%], \chi^2_{10} = 25$	(p < 0.01)		
not applicable				11			
Fixed offects (alway) model	i.	0.40 -	0 47. 0 001	Fixed effects (plural) mode	Ⅰ	-0.55	[-0.94; -0.16]
Fixed effects (plural) model Prediction interval	¶		0.47; 0.09]	Prediction interval			[-2.86; 1.37]
$I^2 = 76\% [60\%; 85\%], \chi^2_2 = 11.58 (p < 0.01)$		Ŀ	2.86; 1.37]	$I^2 = 76\% [60\%; 85\%], \chi_1^2 = 1.90$	(p = 0.17)		
$\gamma = 70.76 [00.76, 00.76], \chi_2 = 11.58 (p < 0.01)$	4 -2 0 2 4				-4 -2 0 2 4		
	-4 -2 0 2 4			11			


BRAIN METABOLISM IN THE EARLY STAGE

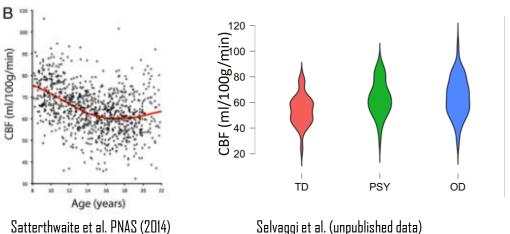
Fusar-Poli et al. JAMA Psychiatry (2020)

Hippocampal hyper-perfusion in CHR-P has been replicated in different cohorts (Allen et al. 2016; Allen et al. 2018, Modinos et al. 2018).

Kindler et al. Schiz Bull (2018)


Shobel et al. Neuron (2013)

BRAIN PERFUSION IN THE EARLY STAGE

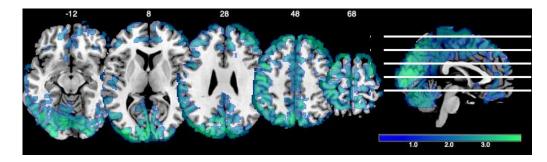

Frontiers Frontiers in Psychiatry

Parsing neurobiological heterogeneity of the clinical high-risk state for psychosis: A pseudo-continuous arterial spin labelling study

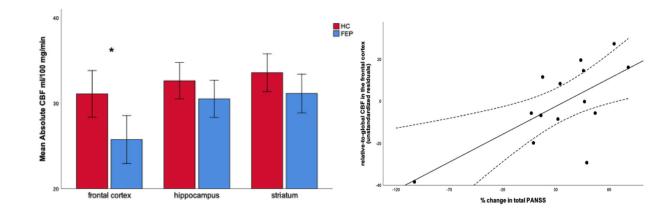
Dominic Oliver^{1,2,3}, Cathy Davies^{4,5}, Fernando Zelaya⁵, Pierluigi Selvaggi^{5,6}, Andrea De Micheli^{1,7}, Ana Catalan^{1,8}, Helen Baldwin^{1,9}, Maite Arribas¹, Gemma Modinos^{4,5}, Nicolas A. Crossley^{2,10}, Paul Allen^{4,11}, Alice Egerton⁴, Sameer Jauhar¹², Oliver D. Howes⁴, Philip McGuire^{2,3,4,7,13} and Paolo Fusar-Poli^{1,7,13,14}*

Brain Perfusion during brain development

Psychological Medicine


cambridge.org/psm

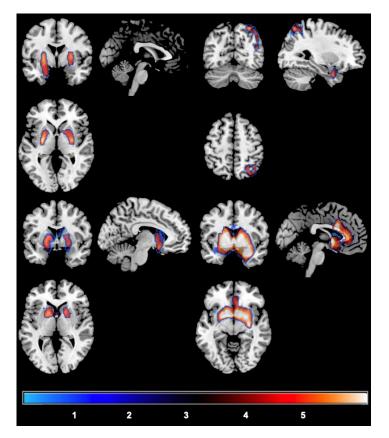
Original Article


*Designates equal contribution as first author Cite this article: Selvaggi P et al (2023)

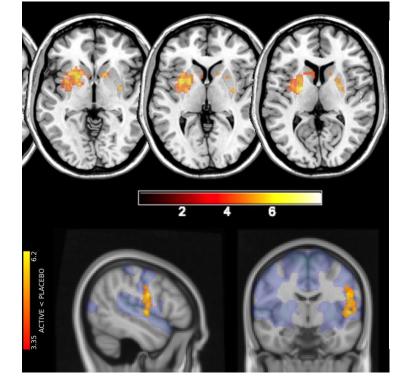
Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response

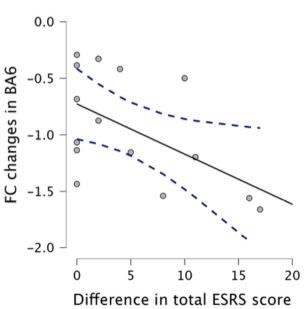
Pierluigi Selvaggi^{1,2,*} ⁽ⁱ⁾, Sameer Jauhar^{3,4,*}, Vasileia Kotoula¹, Fiona Pepper³, Mattia Veronese¹, Barbara Santangelo¹, Fernando Zelaya¹, Federico E. Turkheimer¹, Mitul A. Mehta¹ and Oliver D. Howes^{3,5,6}

FEP < HC TFCE corrected, 5000 permutations


Selvaggi et al. (unpublished data)

ANTIPSYCHOTIC EFFECTS ON BRAIN PERFUSION

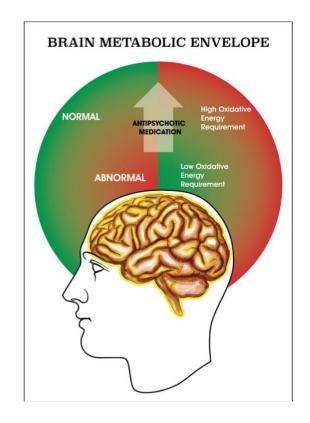



Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles

Pierluigi Selvaggi ^{a,*}, Peter C.T. Hawkins ^a, Ottavia Dipasquale ^a, Gaia Rizzo ^{b,c}, Alessandro Bertolino ^d, Juergen Dukart ^e, Fabio Sambataro ^f, Giulio Pergola ^d, Steven C.R. Williams ^a, Federico Turkheimer ^a, Fernando Zelaya ^a, Mattia Veronese ^{a,1}, Mitul A. Mehta ^{a,1}

The effect persists also after one week exposure to amisupride in healthy volunteers and it is linked with EPS

Selvaggi et al. (in preparation)


CONCLUSION

- O Brain metabolism is altered in psychosis
- Alterations in brain metabolism are present at the early stage of the disease, possibly reflecting abnormal neurodevelopment
- Antipsychotic treatment alters brain metabolism. What is the interaction with baseline anomalies? Are all AP equivalent?
- The investigation of brain metabolism in longitudinal cohorts might reveal pathophysiological mechanisms underlying altered brain function and behaviour, biomarkers for stratification and maybe new treatment targets.

Schizophrenia Bulletin vol. 46 no. 3 pp. 484–495, 2020 doi:10.1093/schbul/sbz119 Advance Access publication 22 November 2019

Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope?

Federico E. Turkheimer^{*,1,2,0}, Pierluigi Selvaggi^{1,0}, Mitul A. Mehta¹, Mattia Veronese¹, Fernando Zelaya¹, Paola Dazzan³, and Anthony C. Vernon^{2,4}

ACKNOWLEDGEMENTS

Psychiatric Neuroscience Group

Alessandro Bertolino Giulio Pergola Antonio Rampino Ileana Andriola Enrico D'Ambrosio Linda Antonucci Christian Valt Roberta Passiatore Leonardo Fazio Maria Favia Milena Tartarelli ... and more

Oliver Howes Mitul Mehta Federico Turkheimer Mattia Veronese Ottavia Dipasquale Tiago Reis Marques Martin Osugo Fernando Zelaya

Funded by the European Union

Realment has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 964874.